Ecology in theory and in data

Instructor: Vadim Karatayev

Course objectives and style: The goals of this class are twofold. The first is to overview foundational concepts in population and community ecology. The second is to become comfortable with implementing your own ecological ideas as models in R and confront them with real ecological data. The first half of lectures will be primarily chalkboard talks, the second half will focus on data analysis and group work. The labs will focus on introducing R and group work.

Skills and concepts you will learn in this course:

- 1. Fundamental concepts in population and community ecology
- Construct, program, and analyze simple population models in R
- 3. Fundamentals of working with large-scale ecological data
- Read and discuss research papers that involve modeling
- 5. Understand and apply a variety of quantitative tools (equilibrium and stability analysis, phase plane analysis, maximum likelihood, etc.)
- 6. Working in small, collaborative research groups

Prerequisites: calculus

Class schedule:

Lectures: 2 per week, 90min each

Computer labs: 1 per week, 120min each

Homeworks: Four problem sets, Two ½-page reviews of a modeling paper that you choose, and group work

Study hall: 1 per week, 120min. This is a period available to you to work on homeworks with peers and both the professor and TA available for asking questions. It is entirely optional and serves as both an extended office hour and a group learning opportunity.

Course outline (approximate, 2 lectures, 1 lab, and 1 homework per week):

Lecture #, topic	Sub-concepts	Readings
 From biology to a model, exponential growth Density dependence and stability analysis 	Continuous vs. discrete time	Fretwell 1991; Hastings 1-16 Kareiva Hastings 81-95; Algebra & calculus review sheet
HW1: math, modeling, or annota	ate lab code	
Lab 1: introduction to R - objects,	functions, and loops	
3. Complex model dynamics	Allee effects and density dependence in discrete time	Hastings 96-101; May 1974
4. Age structure		Hastings 16-40, Crouse
		1987
HW2: problem set 1 – logistic g	owth variations (life histories, me	tapopulations: finding equilibria)

HW2: problem set 1 – logistic growth variations (life histories, metapopulations; finding equilibria)

Lab 2: Simulating and numerically analyzing models - chaos and regime shifts
5. Competition I: Lotka-Volterra 6. Competition II: SpacePhase plane analysis Competition-colonization trade- offs and extinction debtGause 1934 Tilman 1994
HW3: problem set 2 – direct + apparent competition (metapopulations, coral reefs; phase plane
Lab 3: Age-structured models
7. PredationHastings 151-1788. Epidemic modelsHastings 189-200; Keeling 2005; Lloyd-Smith 2005; Keeling and Grenfell 1997
HW4: problem set 3 – predator-prey, herbivore outbreaks (stability and alternative stable states Lab 4: Predation – doing differential equations and phase planes numerically
9. Exam review 10. Midterm exam HW5: Paper review 1
Lab 5: practice exam Q&A
11. Competition III: Niches in time 12. Limits of deterministic modelsStorage effects Stochasticity-induced instability, neutral theoryChesson 2002 Encyclopedia of Theoretica Ecology entry
HW6: problem set 4 – statistics review; choose time series for group project
Lab 6: adding stochasticity to competition and epidemic models
13. Maximum likelihood Model complexity; model Bolker; Ellner et al. selection
14. Observation and process error HW7: Paper review 2
Lab 7: fitting dynamical models to data
15. Data analysis I: Time Diagnostics and transient Bolker dynamics
16. Data analysis II: Space Bifurcations and substituting space for time
HW: group work
Lab 8: Importing and diagnosing data for group project
17. Population genetics I Selection, evolutionary rescue
18. Population genetics II Disease coevolution or gene drives
HW: complete lab 9, group work
Lab 9: Size-structured populations – data-driven integral projection models 19. Group presentations II 20. Group presentations III
Lab 10: Disease coevolution or gene drives through candy

Grading: 25% labs, 20% homework, 30% Midterm exam, 25% group project

Midterm is open-notes and will involve analyzing variations of models seen on homeworks and on the practice exam. Electronic resources not allowed.

Homeworks and Labs are due 1 week after they are assigned; assignments accepted up to 1 week past due date with 10% penalty. Working together in groups is highly beneficial and encouraged, but please note that you cannot copy each other's work. For additional guidelines, see the SJA Collaboration handout under course resources

Group project: You will work with 2-3 of your classmates to chose a time series from the Global Population Dynamics database, statistically analyzing patterns in the time series, and coding up and fitting several dynamical models to the observed patterns. Your task will involve (1) turning in a term paper that summarizes your work and compares your models with published papers and (2) a 15-minute presentation of your group's work to the class. You will receive a separate handout with a description of the project.